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shown in Fig. 6. The regular graph Zz describes a 
space filling of E 3 by the two types of rhombohedra.  
This space filling has no translational subsymmetry 
from the cubic lattice in E ~2 

Finally, we note that a translation shift in E 3 does 
not change YI or Z~ in their intrinsic structure. It 
follows that the 12-grid Yt and its dual Zt are deter- 
mined by three real numbers. 

Fig. 6. Projection of the cubic 12-grid from E ~z to E 3. The cells of 
the dual space filling are two different types of rhombohedra. 

As mentioned before, the two types of rhombo- 
hedra were introduced by Mackay (1981) as the cells 
for a generalization of the patterns introduced by 
Penrose (1979) from two to three dimensions. What 
we believe is new in the present approach is the 
projection from E ~2 to  E 3, the clear association with 
the icosahedral group A(5), the introduction of the 
12-grid and hexagrid in E 3, and the treatment of the 
orientation for the grid and its dual. 

The present projection method opens the way 
towards the complete geometric analysis and classifi- 
cation of the hexagrids and their duals. 
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Abstract 
Scattering factors for outer shells of the first- and 
second-row series of atoms have been obtained by 
expansions with Jacobi functions. Both canonical and 
density-localized shell form factors have been 
studied. For K refinements, both first and second 
derivatives are computed by analytical methods. 
Density-localized shell distributions differ from 
canonical shell distributions within a small sphere 
(<0.5 A) about the nucleus. Shell population and K 
refinements on uracil at the monopole level give 
virtually identical results with canonical and 
density-localized form factors. 

Introduction 
In multipole analyses of electron density distributions 
from measured X-ray structure factors, the contrac- 
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tion •: expansion of the atoms due to chemical bond- 
ing and redistribution of charge is often considered. 
For the monopole this can be partly achieved by 
keeping the density functions of the shells of a spheri- 
cally averaged Hartree-Fock atom fixed, but with 
variable populations in the respective shells. 
Moreover, in K refinements (Coppens, Guru Row, 
Stevens, Becker & Yang, 1979) the outermost shell 
of each atom can be contracted or expanded by 
rescaling K (4Ir sin 0/A) as K/K, with K as a variable. 
For K > l the shell density is contracted and for K < l 
it is expanded. The results of shell populations and 
K scaling may depend on the partitioning of the IAM 
(independent atom model) density into shells. The 
usual practice is to take atomic shell functions based 
on canonical Hartree-Fock atomic orbitals. In this 
case the valence-shell density on the nucleus is non- 
zero. As an example, for N(4S) the valence density 
is 64-4e ,~  3 compared to the core density of 
1325.5 3 A 3 o n  the nucleus. One can seek a unitary 
transformation of the l s and 2s canonical orbitals 
that minimizes the overlap of the ( l s ' )  2 and (2S')  2 
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densities (von Niessen, 1972). The resulting orbitals 
are called density-localized orbitals. In the case of 
N(as), the valence density is reduced to 0.8 e ,~3 on 
the nucleus and the core density is increased to 
1389.1 e ~3. We note that such unitary transforma- 
tions preserve the overall atomic density. In the pres- 
ent paper we will compare the canonical shell form 
factors with localized ones. Spin-restricted Hartree- 
Fock orbitals have been localized as if they were spin 
unrestricted and only orbitals of the same angular 
momentum have been density localized among them- 
selves (Stewart, 1980). 

Clementi (1965) has tabulated spin-restricted 
Hartree-Fock orbitals for the neutral atoms up 
through Kr. These orbitals are spanned by Slater-type 
functions, so that both electron densities and form 
factors can be easily expressed in analytical form. 
The Clementi wavefunctions give atomic form factors 
for the first- and second-row atoms that are in close 
agreement with the numerical results of Cromer & 
Waber (1974). We have generated density-localized 
orbitals from Clementi's compilation, so that the local 
shell form factors are spanned by the same density 
basis functions. Thus first and second derivatives of 
the shell form factors with respect to K can be evalu- 
ated analytically for all sin 0/A values in an X-ray 
structure-factor analysis. The number of radial- 
density basis functions, per atom, is rather large, 
however. A typical first-row atom, such as N(4S), has 
31 functions and for a second-row atom, such as 
Si(3p), the number is 72. For actual application to a 
set of measured X-ray structure-factor amplitudes, 
computation of these analytical form factors demands 
an unwarrantable amount of CPU time. A second 
objective in the present research is to seek a rather 
smaller set of analytical functions which can repro- 
duce the shell form factors, as well as the first and 
second derivatives with respect to the scaling para- 
meter, K, to four-decimal-place accuracy. 

Analytical representation of shell densities and form 
factors 

At large r an atomic density has the asymptotic form 
exp( -yr ) .  At small r, centered on a nucleus which is 
treated as a source point, the electron density varies 
as r t where I is the order of a multipole. For example, 
the 3p state for C has a quadrupole component (l = 2) 
in its charge density. We take r ~ exp( -y r )  as a starting 
point and seek a complete set of functions on the 
interval 0 <-r <-oo. An appropriate set is spanned by 
the Laguerre polynomials, L~+2)(2yr). We thus use 
the expansion 

p,(r)~ri  e -vr ~, a11L~'+2)(2yr). (1) 
n = 0  

The corresponding Fourier-Bessel transform, derived 

in the Appendix, is 

f t (  K ) ~ ( K I ,y ) '  y-<'+3)[1 +(KIT)2] -('+2) 

x ~  211a11(n +2/+2) !  
i1 

xP(,t+312"~+'/2)(t)/(2n+21+l)!!, (2) 

where PC,'~'t~)(t) is a Jacobi polynomial and 

t = [ ( K l y ) 2 - 1 ] I [ ( K l y ) 2 + I ] .  (3) 

For the present task of representing spherical-shell 
form factors, we take l = 0. The Laguerre functions 
in (1) comprise the sequence {g11}, where 

g11= e-'/" L~)(2yr), (4) 

so that we obtain 

Pshei , ( r )  ~ PChell = 2 a11g,,. (5) 
n 

The Fourier coefficients corresponding with the 
orthogonal set of functions in (5) are calculated as 

c o  

a11=[(2y)3n!/(n+2)!]~ psh~,igllr2dr. (6) 
o 

for an appropriate choice of y the coefficients, (6), 
give, when substituted in (5), the best mean-square 
approximation t o  Pshe l l ( r ) .  A consequence of the 
Fourier integral theorem is that the form factor, 
obtained from (5) and (6), is the best mean-square 
fit to the atomic shell form factor as well. The non- 
linear parameter y can be found by a grid search until 

oo  

e =  ~" [P~h~,, -- )-'. a11g1112r 2 d r  (7 )  
0 n 

is a minimum, at which point 

~. a11 7 Psh~,(cgg11/OY) r2 dr 
n 0 

= Y, Y, a,,a,,, 7 g,,(Og,,'/O'Y) r2 dr. 
rl 11' 0 

(8) 

Equations (6) and (8) are the formal solution to the 
expansion. The shell density functions can be simply 
represented from the Clementi (1965) basis functions 
as  

Psheii(r) = ~ Dkr Nk-2 exp(--akr), (9) 
k 

where 

oo  

Psh~.(r)r 2 d r =  1 (10) 
o 

and {Dk} may describe either a canonical or a local- 
ized shell. With (9) substituted into (6) and (8), all 
integrals can be evaluated by standard methods. 
Although (6) and (8) are the best mean-square fit to 
Pshell, other solutions were considered whereby con- 
straints were imposed on P~he,. Each constraint 
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degrades the quality of the mean-square fit. After 
some experimentation, it was decided to impose nor- 
malization [( 10)] on P~h¢,- For this case we modify (6), 

a, = (2y)3 / n!Gn/(n +2)! + ( - 3 )  n + l  

(ll) 

and 

Gn = 7 Psh¢"gn r2 dr. (12) 
0 

In (11), N is the maximum order of the orthogonal 
function used in (5). Also note that as N gets large 
(11) collapses to (6). 

Equations (8) and (11) were solved for both canoni- 
cal and localized outer-shell density functions for the 
neutral atoms Li to CI for increasing values of N 
until five- to four-digit accuracy in representing the 
shell form factor was achieved. For the first-row 
atoms, the first thirteen Laguerre functions (4) (N  = 
12) were needed for the canonical L shells, while 
N = 8 was adequate for the localized L shells. The 
M shells for the second-row atoms were fitted with 
N equal to 19 and 11 for the canonical and localized 
densities, respectively. 

The shell form factor, corresponding to (5), follows 
from (2) with l=  0: 

/~,e.(K) = ),-311 +(Kly)2] -2 
N 

× ~ 2na,(n +2) Ip(3/2"ll2){t)/{grt.-n , - , , , -  +1) v,.. 
n = 0  

(13) 

Recursion relations for the Jacobi polynomials, 
P(ba/E'l/2)(t), allow rapid evaluation of (13). We first 
multiply the an by 2/y3 and relabel them bn. We need 
now to express (13) as 

N 

f~h~,(K) = )-'. bnHn(K, y), (14) 
n = 0  

where Hn obeys the recursion 

Hn+, ={[1 +(n +2)(n +l)2t]Hn 

- (n+2)2Hn_ ,} / (n+l )  2 (15) 

with 

Ho=[1 +(K/v)2 ]  -2 (16) 

H ,=[1  +4t]Ho (17) 

and t is given by (3). In most crystallographic pro- 
grams the scattering variable is usually computed as 
sin 0/A (.~-~), which can take the place of K = 
47r sin 0/A (a.u.) in (16) if y is rescaled by (47ra0) -~ 
where ao, the Bohr radius, is 0.529177 A. The para- 
meters b, and y/(4rrao)for the canonical outer shells 

of the neutral first- and second-row atoms are given 
in Table 1. 

For the corresponding inner shells, similar 
expansions for the atoms Li(~S) to CI(2p) are tabu- 
lated in Table 2.* The table does not include Ne(~S). 
Note that the expansion lengths are rather smaller 
than for comparable quality of fit to the outer (L and 
M) shells of the first- and second-row atoms, respec- 
tively. 

In a K refinement, it is necessary to compute both 
the first and second derivatives of f~hen(K/K) with 
respect to K. We implement this in the same way as 
shown with (14)-(17). 

N 

OfChell/OK = ~, b . H "  ( 1 8 )  
n=O 

N 
2 c 2 rr O f~he./OK = Y~ b,,H,, (18') 

n=O 

where the recursions for H" and H~ are 

H'+l  = (2K)-I {[3n +4 +(n + 1)(n + 2)2 t]H. 

- ( n + 2 ) ( Z n + 3 ) H , _ t } / ( n + l )  (19) 

H','+, = (2K)-I(n +2){[1 +(n+l )2 t ]H"  

- (2n + 3 ) H ' _ I  

- 4 ( n + l ) ( 1 - t Z ) H n / ( Z K ) } / ( n + l ) .  (19') 

The starting values for (19) and (19') are 

H~=2(I  +t)Ho/K (20) 

H', = [3(2 t) 2 + 5(2t) - 2]/-/o/K (21) 

n~  =6t(1 +t)Ho/(K) 2 (20') 

H'( = 6(8t 3 + 7 t z - 3 t - 2 ) H o / ( K )  2. (21') 

Although the expressions in (14)-(21') may seem 
cumbersome, they have been easily coded into a 
42-line Fortran program which rapidly evaluates the 
shell form factor as well as its first and second deriva- 
tives with respect to the scaling parameter K. The first 
and second derivatives (18) and (18') with 0.75 <- K -< 
1.25 for the N values cited above were found to agree 
with the corresponding derivatives of the Clementi 
shell form factors to within four-digit accuracy. 

We emphasize that our analytical expansions are 
over tile full radial interval from zero to infinity. This 
means the analytical form factors have the same 
mean-square quality over all of K space. With a 
population parameter and y scaled by K, one can use 
(4) and (5) to represent the density distribution or to 
compute some average property, such as (r- ' ) .  In 
practice, one is limited to measurements in a restricted 
K space so that parameters such as monopole popula- 
tions and K's suffer from series termination of the 
data. The f~he.(K) in (13) or (14), however, is the 

* We have included these results at the request of a referee. The 
inner-shell values tabulated by Cromer & Waber (1974) are vir- 
tually the same as the results that can be generated from Table 2. 
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Table 1. Jacobi fits to canonical L-shell and M-shell scattering factors for first- and second-row atoms, respectively 

Li B e  B C N O F 

3~/4~rao 0 . 3 6 9 7 0 6 6  0 . 5 0 3 9 7 8 0  0 . 5 9 3 2 4 2 8  0 . 6 9 9 7 2 2 7  0 . 8 0 9 4 5 5 9  0 . 8 9 6 7 8 0 4  0 . 9 8 1 7 5 7 9  

b o 0 - 6 2 3 1 0 2 E  - 0 1  0 . 8 4 0 3 4 9 E  - 0 1  0.  1 0 2 8 4 0 E  + 0 0  0 - 1 1 7 1 8 0 E  + 0 0  0" 1 2 8 7 7 4 E  + O0 0" 144853  E + 00  0 '  1 6 0 6 9 0 E  + 0 0  

b I - 0 - 1 1 7 2 5 8 E -  01 - 0 - 1 4 2 1 8 2 E - 0 1  - 0 ' 3 8 8 8 0 5 E - 0 1  - 0 ' 5 5 4 7 2 3 E -  01 - 0 . 6 7 2 1 3 2 E - 0 1  - 0 . 7 8 2 4 5 2 E -  01 - 0 . 8 7 8 3 9 5 E - 0 1  

b 2 0 . 5 0 1 8 9 1 E - 0 1  0 . 6 1 5 7 3 1 E - 0 1  0 - 6 5 8 5 9 5 E - 0 1  0 - 6 4 0 7 5 5 E - 0 1  0 . 6 1 5 5 0 0 E -  01 0 . 5 9 4 9 3 0 E -  01 0 . 5 7 1 9 2 6 E - 0 1  

b 3 - 0 . 2 0 2 2 3 0 E  - 01 - 0 . 1 8 0 0 1 3 E  - 0 1  - 0 . 1 3 6 4 0 7  E - 01 - 0 .  I 1 6 4 7 4 E  - 0 1  - 0 . 1 0 5 0 8 1 E  - 0 1  - 0 - 8 2 3 9 4 3  E - 02  - 0 . 6 5 0 6 4 7  E - 02  

b 4 0" 1 2 7 8 9 1 E  - 01 0" I 1 1 6 6 4 E  - 01 0 " 9 2 3 8 7 4 E  - 02  0" 8 2 3 5 0 7 E  - 02  0 . 7 5 6 0 8 7 E  - 02  0 . 7 1 6 5 8 4 E  - 02  0 - 6 8 9 2 0 2  E - 02  

b 5 - 0 - 4 3 4 3 0 2 E  - 02  - 0 . 3 1 5 1 2 5 E  - 02  - 0 . 2 0 1 5 6 8 E  - 02  - 0 . 1 6 6 8 3 6 E  - 02  - 0 - 1 4 8 3 8 9 E  - 02  - 0 . 1 1 9 3 2 4 E  - 02  - 0 - 9 1 3 5 5 1 E  - 03 

b 6 0 . 2 3 0 8 8 5  E - 02  0 - 1 8 4 7 5 2  E - 02  0 . 1 4 5 1 2 6 E  - 02  0 - 1 2 4 5 8 6 E  - 02  0 . 1 1 1 8 0 8  E - 02  0.  1 0 7 2 8 0 E  - 02  0- 1 0 2 6 2 6 E  - 02  

b 7 - 0 . 6 8 0 8 8 4 E  - 03  - 0 . 4 6 9 0 3 9  E - 03 - 0 - 2 8 0 6 1 2  E - 03  - 0 . 2 1 6 3 8 2  E - 03  - 0 . 1 9 4 7 2 3  E - 03  - 0 . 1 6 1 3 6 3  E - 03 - 0 .  I 18918  E - 03  

b 8 0- 3 7 1 5 9 7  E - 03 0 . 3 0 1 6 6 4  E - 03  0 . 2 4 6 1 0 7  E - 03 0 . 2 0 6 3 2 0  E - 03 0" 1 8 0 3 0 6  E - 03  0 - 1 8 4 0 6 7  E - 03  0" 1 7 8 2 0 7  E - 03  

b 9 - 0 . 8 7 2 6 1 0 E  - 0 4  - 0 - 6 0 8 8 0 9 E  - 04  - 0 . 3 6 5 1 0 7  E - 0 4  - 0 - 2 6 3 4 2 2 E  - 04  - 0 . 2 4 0 3 5 1 E  - 0 4  - 0 . 2 0 3 9 4 7  E - 0 4  - 0 . 1 4 4 9 0 6 E  - 0 4  

b lo  0 . 5 8 3 6 9 0 E  - 0 4  0 ' 5 0 3 5 7 7 E  - 04  0 - 4 5 7 2 9 3  E - 0 4  0 . 3 8 2 4 3 3  E - 0 4  0 . 3 1 7 7 8 1 E  - 04  0 . 3 5 4 8 9 4 E  - 04  0 . 3 4 9 5 6 9 E  - 04  

b~ j - 0 . 8 5 4 5 5 8 E  - 05  - 0 . 6 2 5 8 0 4 E  - 05  - 0 " 4 2 0 3 4 9  E - 05  - 0 . 3 0 1 3 6 5  E - 05  - 0 " 2 6 3 3 2 5 E  - 05  - 0 . 2 5 0 3 6 9 E  - 05  - 0 "  1 8 7 9 1 4 E  - 05  

b~ 2 0 - 9 9 8 9 0 6  E - 05  0 - 9 1 8 5 4 8 E  - 05  0 . 9 6 4 8 1 9 E  - 05  0 - 8 2 1 4 1 5  E - 05 0 . 6 3 2 9 9 6  E - 05 0 - 7 9 5 3 6 2 E  - 05  0 . 7 9 1 1 7 0 E  - 05  

Na Mg A I  S i  P S C I  

y/47ra o 0 . 5 6 4 8 4 5 2  0 . 6 8 8 0 9 7 7  0 . 7 3 0 8 9 4 3  0 - 8 2 5 3 1 7 9  0 . 9 1 9 3 7 1 9  0 . 9 8 8 9 2 6 9  1 - 0 6 7 2 5 0 3  

b o 0 - 1 6 3 2 6 6 E -  01 0 . 2 3 1 3 9 9 E - 0 1  0 . 3 1 4 4 8 3 E - 0 1  0 . 3 6 4 8 0 8 E -  01 0 . 4 0 8 7 9 4 E  - 01 0 . 4 6 2 7 0 0 E  - 01 0 . 5 0 6 0 0 7 E  - 01 

b~ - 0 . 2 7 3 8 0 6 E  - 02  - 0 - 3 5 6 6 6 7 E  - 02  - 0 . 4 3 5 8 0 3 E  - 02  - 0 . 4 5 5 2 6 5  E - 02  - 0 . 4 8 8 4 5 8 E  - 02  - 0 - 5 3 1 3 4 8 E  - 02  - 0 ' 5 6 9 2 7 8  E - 02  

b 2 0 . 6 0 3 9 6 6 E  - 02  0 . 7 3 2 1 7 3  E - 02  0 . 9 5 0 5 5 1 E  - 02  0 - 9 2 1 3 2 7  E - 02  0 . 9 0 8 2 3 1 E  - 02  0.  I 0 1 3 2 2 E  - 01 0 . 1 0 7 2 1 6 E  - 0 I 

b 3 - 0 . 8 4 0 8 9 5  E - 02  - 0 . 8 7 3 2 6 5 E  - 02  - 0 '  1 2 6 4 6 3 E  - 01 - 0 '  1 3 6 5 7 8 E  - 01 - 0 - 1 4 8 1 2 8 E  - 01 - 0 . 1 7 0 5 4 5 E  - 01 - 0 . 1 8 6 5 3 7 E  - 01 

b 4 0 - 1 1 0 7 4 6 E -  01 0 . 1 3 9 1 4 0 E -  01 0 . 1 5 2 0 7 0 E -  01 0 . 1 5 4 2 2 0 E -  01 0 . 1 5 6 6 8 0 E - 0 1  0 . 1 5 9 2 3 5 E - 0 1  0 . 1 6 0 1 5 2 E - 0 1  

b 5 - 0 . 5 2 6 3 7 7 E  - 0 2  - 0 . 5 0 8 9 7 7 E  - 0 2  0 . 4 8 0 7 5 3  E - 02  - 0 . 5 2 2 6 5 9 E  - 02  - 0 . 5 5 8 2 1 3 E  - 02  - 0 . 5 4 2 8 4 7  E - 0 2  - 0 . 5 3 6 7 0 4 E  - 02  

b 6 0 . 6 0 5 1 2 5  E - 02  0 . 6 4 0 6 6 8  E - 02  0 - 6 0 8 9 1 8  E - 02  0 . 5 8 3 2 5 9 E  - 02  0 . 5 5 8 6 1 7 E  - 02  0 . 5 2 6 4 6 8  E - 02  0 . 5 0 0 4 0 2  E - 02  

b 7 - 0 - 2 3 7 9 6 5 E  - 02  - 0 - 2 0 1 2 2 7 E -  02 - 0 . 1 3 9 5 1 1 E - 0 2  - 0 - 1 5 3 8 1 0 E  - 02  - 0 . 1 5 9 6 1 9 E  - 02  - 0 . 1 4 1 1 0 8 E  - 02  - 0 . 1 3 2 3 7 8 E  - 02  

b a 0 . 2 5 5 4 5 1  E - 02  0 . 2 3 6 4 6 9  E - 02  0- 2 1 0 1 9 4  E - 02  0 . 1 8 9 9 4 9  E - 02  0 - 1 7 1 9 0 0  E - 02  0 . 1 5 5 9 9 9  E - 02  0 - 1 4 3 4 4 5  E - 02  

b 9 - 0 . 8 9 9 1 1 5 E  - 03  - 0 . 6 8 5 6 4 4 E  - 03  - 0 . 4 1 0 2 8 7  E - 03  - 0 . 4 4 2 4 2 5  E - 03  - 0 . 4 4 1 6 7 6 E  - 03  - 0 . 3 6 7 4 4 7  E - 03 - 0 . 3 3 4 3 3 5  E - 03  

b~o 0 - 9 6 6 9 7 6 E  - 03 0 . 8 1 1 2 9 8 E  - 03  0 . 7 2 2 1 2 8 E  - 03 0 . 6 1 7 5 1 5 E  - 03  0 . 5 2 9 6 4 4 E  - 03  0 . 4 7 3 9 3 4 E  - 03  0 . 4 2 7 8 0 2 E  - 03  

bl  i - 0 . 3 0 5 1 9 8  E - 03  - 0 . 2 1 8 1 3 1 E  - 03 - 0 - 1 2 6 2 0 7  E - 03  - 0 - 1 3 2 9 4 7  E - 03 - 0 . 1 2 5 7 6 4 E  - 03  - 0 -  1 0 3 4 5 6 E  - 03  - 0 . 9 2 7 5 6 6 E  - 0 4  

b~2 0 . 3 4 9 1 6 4 E  - 03  0 . 2 7 2 7 1 1  E - 03  0 . 2 5 2 4 9 9 E  - 03  0 . 2 0 1 8 4 0 E  - 03  0 - 1 6 2 3 9 9 E  - 03 0 . 1 4 3 7 0 2 E  - 03  0 . 1 2 6 6 6 2 E  - 03 

b~3 - 0 . 9 4 6 8 3 1  E -  0 4  - 0 . 6 5 1 3 7 5 E -  04  - 0 - 3 8 4 6 7 7 E  - 0 4  - 0 . 3 9 0 4 0 6 E  - 0 4  - 0 . 3 4 5 7 3 7 E - 0 4  - 0 . 2 8 9 1 8 5 E -  04  - 0 . 2 5 7 6 5 3 E -  04  

bL4 0" 1 2 4 1 1 8 E -  03 0 . 9 1 7 4 6 5 E - 0 4  0 . 9 0 3 7 3 2 E  - 04  0 . 6 6 3 8 9 8 E  - 04  0 . 4 9 7 1 1 4 E - 0 4  0 - 4 3 5 7 5 3  E - 04  0 . 3 7 3 0 4 8 E  - 04  

b~ 5 - 0 - 2 6 3 9 9 1 E  - 04  - 0 - 1 7 7 2 0 0 E  - 04  - 0 .  I 1 1 5 4 0 E  - 04  - 0 . 1 0 5 1 5 9 E  - 04  - 0 . 8 6 1 0 0 4 E  - 05  - 0 - 7 3 7 0 5 7 E  - 05  - 0 . 6 5 2 1 2 0 E  - 05  

h i6  0 - 4 4 6 7 9 6 E  - 0 4  0 . 3 1 5 4 4 9 E -  04  0 - 3 3 4 7 1 2 E - 0 4  0 . 2 2 4 5 7 7 E -  0 4  0 - 1 5 7 1 0 3 E - 0 4  0 . 1 3 7 0 6 6 E - 0 4  0 . 1 1 4 4 1 3 E -  04  

h i7  - 0 . 6 3 2 7 5 3  E - 05  - 0 . 4 1 5 8 3 4 E  - 05  - 0 . 3 1 5 9 8 8 E  - 05  - 0 . 2 5 5 1 6 5 E  - 05  - 0 . 1 8 9 3 0 0 E  - 05  - 0 . 1 6 5 1 3 8 E  - 05  - 0 . 1 4 3 8 6 3 E  - 05  

b~s 0 . 1 6 9 6 3 7 E  - 04  0 .  I 1 5 0 2 6 E  - 04  0 . 1 3 1 5 5 9 E  - 04  0 . 8 2 0 4 5 5  E - 05  0 . 5 4 6 7 4 4 E  - 05  0 . 4 7 7 7 4 8 E  - 05  0 . 3 9 4 5 1 3 E  - 05 

Table 2. Jacobi fits to canonical K-shell scattering factors for first-row atoms and ( K + L)-shell scattering factors 
for second-row atoms 

Li B e  B C N O F 

y/4~rao 0 . 9 1 0 9 6 8 0  1 . 2 4 5 7 7 8 4  1 . 5 5 4 4 1 7 0  1 . 8 4 8 0 6 4 3  2 . 1 4 5 6 4 2 0  2 . 4 7 5 4 6 9 1  2 . 7 4 9 5 8 9 4  

b o 0 - 8 3 0 8 3 4 E  + 0 0  0 . 8 3 4 1 7 1 E  + 0 0  0 . 8 5 7 1 7 1 E  + 0 0  0 - 8 8 3 0 2 3 E  + 0 0  0 . 8 9 9 0 9 4 E  + 0 0  0 - 8 9 3 0 3 3 E  + 0 0  0 - 9 1 6 1 7 1 E  + 0 0  

b~ - 0 . 3 6 8 1 0 1  E - 01 - 0 . 3 9 4 6 0 9  E - 01 - 0 - 3 5 0 7 3 8 E  - 01 - 0 - 2 8 9 0 4 9  E - 01 - 0 . 2 4 9 8 6 5  E - 01 - 0 . 2 7 2 5 9 1  E - 01 - 0 - 2 0 8 4 3 6 E  - 01 

b 2 0 . 8 8 7 1 2 4 E  - 02  0 . 7 2 2 6 2 8  E - 02  0 . 5 8 3 1 1 6 E  - 02  0 . 4 8 3 2 6 8 E  - 02  0 . 4 1 6 3 5 1 E  - 02  0 . 3 9 6 7 5 7 E  - 02  0 . 3 4 3 7 3 0 E  - 02  

b 3 - 0 - 3 3 1 0 0 7 E  - 03 - 0 . 2 7 0 2 0 1 E  - 03  - 0 . 1 5 9 8 7 9 E  - 03 - 0 - 4 1 3 9 9 5 E  - 04  - 0 . 1 8 6 5 2 5  E - 04  - 0 . 5 3 9 3 7 5 E  - 0 4  0 - 9 4 4 2 0 6 E  - 05  

b 4 0 . 1 4 4 3 1 8 E  - 03  0 . 9 1 5 1 3 0 E  - 04  0 - 6 7 0 8 0 9 E  - 0 4  0 . 5 5 7 3 2 7 E  - 0 4  0 - 5 0 8 7 7 8 E  - 04  0 . 5 5 3 9 5 1 E  - 04  0 - 5 0 3 0 4 9 E  - 04  

b 5 - 0 . 1 5 8 3 5 1 E  - 05  - 0 . 6 6 2 9 2 6 E  - 06  - 0 . 7 3 3 0 3 4 E -  06  - 0 . 7 7 5 8 2 0 E  - 06  - 0 . 7 2 8 5 4 4 E  - 06  - 0 . 6 4 8 7 7 3  E - 06  - 0 . 6 8 1 6 7 6 E  - 06  

Na Mg A I  S i  P S C I  

y / 4 1 r a  o 1 . 5 0 4 8 0 2 9  1 . 7 1 0 6 0 6 7  1 . 9 1 9 9 7 6 4  2 . 1 1 4 7 9 1 2  2 . 3 1 1 5 4 5 1  2 . 4 9 7 0 8 7 5  2 . 6 5 4 3 0 1 9  

b o 0 . 5 8 9 0 6 8 E  + 0 0  0 ' 5 7 1 2 0 2 E  + 0 0  0 " 5 5 5 5 5 8 E  + 0 0  0 . 5 4 7 3 7 8 E  + 0 0  0 - 5 3 9 8 9 6 E  + 0 0  0 . 5 3 6 5 4 4 E  + 0 0  0 . 5 4 0 9 4 8 E  + 0 0  

b i 0 . 1 2 7 3 0 7 E  + 0 0  0 . 1 1 2 1 5 2 E  + 0 0  0 . 9 9 8 4 1 6 E  - 01 0 - 9 1 6 5 6 1 E  - 01 0 . 8 4 7 2 8 3 E  - 01 0 . 7 9 9 2 5 0 E  - 0 1  0 . 7 8 1 0 5 1 E  - 0 1  

b 2 0 . 1 0 6 6 1 1 E  + 0 0  0 . 9 8 9 9 4 6  E - 01 0 . 9 2 7 7 8 4 E  - 01 0 . 8 9 4 3 7 0 E  - 01 0 . 8 6 5 3 5 9 E  - 01 0 . 8 5 0 5 6 4 E  - 01 0 ' 8 5 9 8 0 8 E  - 01 

b 3 0 '  1 2 3 4 1 2 E  - 01 0 " 7 6 7 2 0 7 E  - 02  0 - 4 0 7 8 5 7 E  - 02  0 - 2 0 7 8 6 1 E  - 02  0 . 4 2 3 9 8 8 E  - 03  - 0 - 4 7 7 6 6 2 E  - 03  - 0 . 1 7 1 1 7 8  E - 03  

b 4 0 - 1 5 0 4 7 5 E -  01 0 - 1 3 0 9 0 0 E -  01 0 . 1 1 6 8 2 8 E - 0 1  0 . 1 0 7 9 8 1 E - 0 1  0 . 1 0 0 9 8 2 E - 0 1  0 . 9 5 9 6 0 3 E -  02 0 - 9 3 1 6 3 8 E -  02  

b s 0 - 1 4 6 0 6 0 E  - 02  0 . 6 9 9 3 3 6 E  - 03  0 . 1 5 6 8 1 2 E  - 03 - 0 . 6 4 0 2 1 2 E  - 04  - 0 - 2 3 6 3 9 6 E  - 03  - 0 . 2 8 2 9 8 7 E  - 03  - 0 . 1 1 5 6 7 0 E  - 03 

b 6 0 . 2 3 4 5 3 4 E -  02  0 . 1 8 7 9 6 0 E  - 02  0 - 1 5 5 5 4 4 E  - 02  0 . 1 3 5 1 2 5 E -  02 0 . 1 1 9 3 4 0 E  - 02  0 . 1 0 7 9 1 1 E - 0 2  0 . 9 9 7 7 1 0 E  - 03  

b 7 0 . 1 8 4 5 3 9 E  - 03  0 . 7 3 4 7 1 0 E  - 0 4  0 - 3 2 1 4 8 4 E  - 05  - 0 - 1 5 3 0 9 0 E  - 0 4  - 0 . 3 0 6 0 0 3  E - 0 4  - 0 - 2 7 2 7 2 5 E  - 04  0 " 4 9 7 1 0 0 E  - 05  

b 8 0 . 3 9 5 5 1 5  E - 03  0 . 2 8 6 4 4 1 E  - 03 0 . 2 1 9 4 4 1  E - 03  0 . 1 7 6 8 9 8  E - 03  0 - 1 4 7 4 0 4 E  - 03 0 . 1 2 5 9 0 6 E  - 03 0.  I 10793  E - 03 

b 9 0 . 2 4 3 3 5 1 E  - 0 4  0 - 9 2 1 4 6 4 E  - 05  - 0 . 4 8 7 5 7 4 E  - 06  - 0 . 9 3 3 9 3 8 E  - 06  - 0 . 2 6 0 4 0 1 E  - 05  - 0 . 1 5 5 6 0 4 E  - 05  0 . 3 2 4 3 3 6 E  - 05  

b~o 0 - 7 1 4 5 6 3 E -  04  0 . 4 7 0 8 8 4 E  - 04  0 . 3 3 1 9 1 0 E -  04  0 - 2 4 7 9 4 1  E -  04  0 . 1 9 3 4 3 1 E -  04  0 . 1 5 8 8 7 3 E -  0 4  0 . 1 3 4 1 0 9 E - 0 4  

b~ i 0 . 3 1 7 6 2 7 E  - 05  0.  1 0 8 6 8 2 E  - 05  - 0 . 5 5 8 0 5 1 E  - 07  0 . 1 4 8 7 5 4 E  - 06  - 0 - 5 6 1 6 6 4 E  - 07  0 . 3 2 4 6 3 8 E  - 07  0 - 6 0 4 0 9 0 E  - 06  

bt 2 0 . 1 3 8 9 3 2 E  - 0 4  0 . 8 3 6 9 9 9 E  - 05  0 . 5 3 3 5 2 2 E  - 05  0 . 3 7 5 5 7 0 E  - 05  0 . 2 7 2 9 5 0 E  - 05  0 " 2 1 8 5 1 6 E  - 05 0 '  1 8 0 8 9 7 E  - 05  

bt 3 0 . 1 9 9 0 9 4 E  - 06  0 . 3 5 6 7 0 4 E  - 07 - 0 - 1 3 5 3 1 6 E  - 07  0 . 2 9 4 9 2 7 E  - 07  0 - 3 2 6 7 8 1 E  - 09  0 . 1 0 4 5 7 2 E  - 07  0 . 5 6 0 1 2 4 E  - 07  

bt ,  , 0 . 2 9 9 9 1 6 E  - 05  0 . 1 6 3 8 2 3  E - 05 0 . 9 3 5 4 3 0 E  - 06  0 . 6 4 2 1 9 6 E  - 06  0 . 4 4 5 3 2 9 E  - 06  0 " 3 4 4 0 8 8 E  - 06  0 . 2 9 0 2 7 6 E  - 06  

Fourier-Bessel transform of P~helt(r) in (5), and one 
may convert the functions from one space to another 
with no series termination. Our construction here of 
an analytical form factor is in contrast to fits over 
finite segments of K space (e.g. Cromer & Mann, 
1968). For the latter case, the analytical functions 
cannot have a reliable Fourier-Bessel transform to r 
space. 

Comparison of canonical to localized shell radial 
functions and form factors 

It is instructive to observe how the density localization 
procedure redistributes the canonical shell density 
into the localized shell. For the L-shell functions of 
C(3p), N(4S) and O(3p), 

p~'~"(r) = 21x2,12 + nlx2pl 2 (22) 
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and 
I o c /  \ PL t r ) =  2lXosl 2 -t-nlx2pl 2 (22') 

and n is 2, 3 or 4 for C, N or O. The Xos is the localized 
outer s orbital and X2s is the canonical 2s atomic 
orbital. Fig. 1 is a display of the difference, 

apL=lx2~l=-Ixo~l = (23) 

as a function of r for C, N and O. Each orbital has 
unit norm. The values at r equal to zero (not displayed 
in Fig. 1) are 18.5, 31.8 and 50.9 e/~-3 for C, N and 
O, respectively. Nodes occur near 0.12, 0.14, and 
0.16/~ for the O, N, and C atoms, respectively, and 
reach minima near r equal to 0-17, 0-20, and 0.23/~. 
We see that by localization the charge density within 
a sphere of --- 0.14/~ from the nucleus is redistributed 
into a shell that extends out to about 0.5/~,. The 
corresponding localized K shell becomes more con- 
centrated in charge density within 0.14A of the 
nucleus. 

The difference radial form factors for the difference 
functions in (23), 

o o  

AfL(K) = ~ A p t . ( r ) j o ( K r ) r  2 dr ,  (24) 
0 

are plotted in Fig. 2 as a function of sin 0/;t (A-~) 
for the atoms C, N and O. The localized L-shell form 
factors have larger amplitude by ---0.01 within 0.2 to 
0.5 ~-~ in sin 0/A; the canonical shell amplitudes 
are larger by ~0.02 in the high sin 0/A region of 1-0 
to 1.4/~,-~. It is in this domain where the Fourier- 
Bessel components of the charge density differences 
(displayed in Fig. 1) within ~0.15 ~ of the nucleus 
are largest. The magnitude of the differences in these 
shell form factors is rather small. For diffraction data 
restricted to a sphere within 0.9 A-~ in sin 0/A, one 

would expect similar results in K variation of either 
shell form factor. Only with a large data set and very 
small amplitude of atomic motion do we anticipate 
a significantly different set of K and population para- 
meters among the two L-shell form factors. 

Application to uracil 

Monopole analyses have previously been applied to 
uracil (Stewart, 1970; Y~nez & Stewart, 1978). The 
structure-factor amplitudes, If HI, and corresponding 
weights, wn, were taken from Stewart & Jensen (1967). 
The diffraction data were measured at room tem- 
perature with a manual diffractometer. A full hemi- 
sphere was measured up to sin 0/A = 0-6 A--l; other 
data were collected out to 0.9/~-1, but only for those 
reflections for which net counts were calculated to 
be larger than 200. Altogether, 1163 unique reflections 
constitute the data set for a least-squares refinement. 
A conventional structure refinement (89 parameters), 
based on  IFHI, had a final Rw =0.037* (Stewart & 
Jensen, 1967, 1969). 

We choose the final refined model of the atomic 
parameters as a fixed reference point for an L-shell 
projection analysis. The analytical L-shell (localized 
or canonical) form factors for C, N and O with the 
corresponding localized or canonical K-shell form 
factors were used. For the hydrogen atoms, a form 
factor derived from a ls Slater-type function with an 
exponent of 1.24 Bohr -* was used. A conventional 
refinement with atomic shell populations fixed at the 
neutral-atom values was in virtual agreement with the 
earlier results reported by Stewart & Jensen (1967) 

* g,,, = {Y w , . ( I F . I - I F ~ I ) 2 / E  w. lP .12}  '/2 
H H 

o 

i i 1 i i ! i i 
' 0 . 0 0  0 . 2 0  0 . 4 0  0 . 6 0  0 . 8 0  1 . 0 0  

r(J,)  

Fig. 1. Plot of zip (e/~-3)[(23)] versus r (/~) for atoms C, N and 
O. Values of zip at r =0 are 18.5, 31.8 and 50.9 e/~-3 for C, N 
and O, respectively. 

o 

,, 6 

8- d 

6 

t ~  i i i i i i 1 i i i 

' 0 . 0 0  0 . 4 0  0 . 8 0  1 . 2 0  1 . 6 0  2 . 0 0  

sin 8 / X  (~ , " )  

Fig. 2. Plot of Afx 10 [(24)] versus sin 0/;t (A -I) for atoms C, N 
and O. 
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with the exception of hydrogen-atom (isotropic) 
thermal parameters. The analytical 1 s form factor for 
H in the present study gives rise to thermal parameters 
which are ---40% larger than the earlier work where 
a numerical form factor for H bonded in H2 (Stewart, 
Davidson & Simpson, 1965) was used. With the 
atomic and thermal parameters fixed at the conven- 
tional results, the L-shell form factors and H-atom 
form factors were assigned variable monopole elec- 
tron populations for each atom; the K-shell 
monopole populations were constrained to be two 
for all non-hydrogen atoms. In addition to the 
monopole population parameters, K were varied for 
the L shells. Altogether, 20 parameters were refined. 
The quantity minimized was )-'.H WH(IFHI- If~l) 2. The 
least-squares matrix was constructed with explicit 
second-derivative terms. A summary of the refinement 
results with canonical shells is given in Table 3. Iden- 
tical results were found with localized shells as well. 
The final Rw, with our restricted model, is 0.034. 

It is somewhat interesting to compare the K refined 
values with an earlier L-shell result whereby the 
canonical shell form factors were fixed at K of unity 
(Stewart, 1970). The oxygen L shells are scaled by 
K -  0-97; this 3% expansion in the density function 
leads to a net charge of - - 0 - 2 7 ,  whereas the previous 
analysis revealed a net charge of zero. For the nitrogen 
atoms the net charge is ~ - 0 . 0 9  with K ~ 0-99, whereas 
for K unity the net charge was +0.05. Except for C(5), 
the carbon atoms are contracted by 3% and show a 
positive net charge of +0.3 to +0-2. In the case of 
C(5) the shell density is expanded by 1% and has a 
negative net charge of 0.3. For the results with an 
unscaled canonical L-shell form factor, the carbon 
atoms were virtually neutral except for C(5) which 
had a net charge o f - 0 . 2 .  The results we have here 
with variable K scaling are rather similar to the L-shell 
projection values with standard molecular L-shell 
(nodeless density functions) form factors (Stewart, 
1970). It is also evident from Table 3 that contracted 
L-shell density functions have net positive charge, 
while expanded functions contain net negative 
charge. 

At completion of the L-shell projection refine- 
ments, a stationary point was achieved and the corre- 
lation coefficients were determined from the inverse 
least-squares matrix elements. The L-shell population 
coefficients and the corresponding K parameters were 
always negatively correlated for the same atom. The 
values given in Table 3 vary from -0-90 to -0.85.  
This is an expected result which serves to emphasize 
that a variance calculation for an electrostatic 
property, such as the molecular dipole moment or 
total electrostatic potential, derived from the model 
density in Table 3, must include the covariance terms 
for a meaningful estimated standard deviation. All 
other correlation coefficients among the twenty para- 
meters were less than 0-707 and greater than -0.707. 

Table 3. Results  o f  a r, refinement on uracil 

q is the  net  a t o m i c  cha rge  fo r  the  last d e c i m a l  p lace .  E.s .d . ' s  are  
s h o w n  in ( ) fo r  the  last  d e c i m a l  place .  CmK is the  c o r r e l a t i o n  
coeff ic ient  b e t w e e n  K a n d  the  L-she l l  m o n o p o l e  p o p u l a t i o n .  

A t o m  q K C m K  

0(7)  -0.28 (6) 0.968 (6) -0-8697 
0(8)  -0.25 (6) 0.973 (6) -0.8888 
N( I ) -0 .  I I (7) 0-987 (7) -0.9009 
N(3) -0.07 (7) 0.994 (7) -0.8889 
C(2) 0.32 (8) 1.03 (1) -0.8861 
C(4) 0.33 (8) 1.03 (1) -0.8739 
C(5) -0 .34 (9) 0.987 (9) -0.8542 
C(6) 0.22 (9) 1.02 (i) -0.9024 
H(9) 0"07 (3) - -  - -  
H(10) -0.01 (3) - -  - -  
H ( I I )  0.05 (3) - -  _ 

H(12) 0.07 (3) - -  - -  

The K refinements of either localized on canonical 
shells are virtually identical based on the data for 
crystalline uracil. The only advantage in the analytical 
localized shell form factors is a slight gain in computa- 
tion time due to the smaller expansion (nine func- 
tions) compared to the canonical expansion (13 func- 
tions). This is not a rate-determining step, however, 
in the construction of the least-squares matrix. 

The sample calculation in application to uracil is 
a model restricted to L-shell projections. Rather more 
extensive refinements by van der Wal (1982) have 
been pursued, but the restricted data set for uracil 
precludes a definitive result for the static electron 
density. 
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APPENDIX 

Fourier-Bessel transform of rle-~'LC.Zl+zX2yr ) 
For radial multipoles spanned by the functions 
rtL2,t+2(2yr) e - ~  the corresponding radial form factor 
is 

f , , , l (K)  = S r 1+2 e-~'rL~t+2)(2yr)jt(Kr) dr, 
o 

( a l )  

where K is 4rr sin 0/A. The evaluation of (A 1 ) closely 
follows the method used by Podolsky & Pauling 
(1929). We define 

oo 

F =  Y. f,,~Z" IZ]< 1. (A2) 
rl=O 

The generating function for a Laguerre polynomial 
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( Handbook of Mathematical Functions, 1972, equation 
22.9.15), 

( I - Z )  -'~-' exp[-XZ/ ( l±Z)]  = ~ L~(X)Z", 
rl=O 

(a3) 

can be used with (AI) to rewrite (A2) as 

F =  2 /+2 exp [-yr(1 + Z ) / ( I  -Z)]jt(Kr) dr 
=0 

× Z " / ( 1 - Z )  2'+3. (a4) 

The integral in (A4) may be evaluated in simple 
closed form [Epstein & Stewart, 1977, equation (A2)]. 
With some algebraic rearrangements, 

(21+2)!(K/y)' 
F= (21 + 1)!!y'+3[1 + ( K / y ) 2 ]  '+2 

(1 +z)  
× 

,,=o (12_, _2tZ+Z2)t+2Z", (A5) 

where 

t=[(K/y)2-1]/[(K/y)2+l]. (A6) 

From the generating function for a Gegenbauer poly- 
nomial (Handbook of Mathematical Functions, 1972, 
equation 22.9.3), we can write (AS) as 

(21+2)!(K/y)' 
F= 

(2l+ 1)!!y'*~[1 +(K/y):] '÷: 
oo 

,e-~(I+2)( x ~ [C~/+2~(t) +~._l ,t)]z". (A7) 
n=0 

The Gegenbauer polynomial, CC,~+2)(t), may be 
expressed as a Jacobi polynomial, P~;+3/2.t+3/2)(t) 
(Handbook of Mathematical Functions, 1972, equation 
22.5.20). The sum of the two polynomials in (A7) 

then satisfies a recurrence relation for Jacobi poly- 
nomials (Handbook of Mathematical Functions, 1972, 
equation 22.7.19). Thus (A7) can be simplified to 

F=(K/y)ty-(t+3)[1 +(K/y)2] -(t+2) 

x~__,°° 2"(n(2n +2l+l)Vv+2l+2)! p~t+3/2,1+j/2)(t)Zn. (A8) 
n = 0 " " 

In comparing (A2) to (A8), we have the desired result, 

(K/y)t2"(n +2l +2)! 
f,,,t ( K ) = yt+3[l +(g/y)2]~+2(2n +2l + l)!! 

x p~+a/2,t+l/2)(t). (A9) 
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Abstract 

A hierarchy of classifications for subgroups of space 
groups by means of Euclidean and affine normalizers 
is introduced. The different levels of this classification 
scheme are illustrated in detail with examples and its 
usefulness for various problems is demonstrated. The 

0108-7673/84/050593-08501.50 

Euclidean (or affine) normalizers of a space group G 
and of one of its subgroups U may either coincide 
[N(G)=N(U)], or form a group-subgroup pair 
[N(G)D N(U) or N(G)c  N(U)],  or share only a 
common subgroup [N(G)7~N(U) and N ( G ) ¢  
N(U)].  The different implications of these cases on 
the equivalence classes of subgroups (or supergroups) 
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